This repository has been archived on 2024-06-25. You can view files and clone it, but cannot push or open issues or pull requests.

1943 lines
67 KiB
C

/*
* freeglut_geometry.c
*
* Freeglut geometry rendering methods.
*
* Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved.
* Written by Pawel W. Olszta, <olszta@sourceforge.net>
* Creation date: Fri Dec 3 1999
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <GL/freeglut.h>
#include "fg_internal.h"
#include "fg_gl2.h"
#include <math.h>
/*
* Need more types of polyhedra? See CPolyhedron in MRPT
*/
/* VC++6 in C mode doesn't have C99's sinf/cos/sqrtf */
#ifndef HAVE_SINF
#define sinf(x) (float)sin((double)(x))
#endif
#ifndef HAVE_COSF
#define cosf(x) (float)cos((double)(x))
#endif
#ifndef HAVE_SQRTF
#define sqrtf(x) (float)sqrt((double)(x))
#endif
/* General functions for drawing geometry
* Solids are drawn by glDrawArrays if composed of triangles, or by
* glDrawElements if consisting of squares or pentagons that were
* decomposed into triangles (some vertices are repeated in that case).
* WireFrame drawing will have to be done per face, using GL_LINE_LOOP and
* issuing one draw call per face. Always use glDrawArrays as no triangle
* decomposition needed. We use the "first" parameter in glDrawArrays to go
* from face to face.
*/
/* Version for OpenGL (ES) 1.1 */
#ifndef GL_ES_VERSION_2_0
static void fghDrawGeometryWire11(GLfloat *vertices, GLfloat *normals,
GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode,
GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2
)
{
int i;
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, vertices);
glNormalPointer(GL_FLOAT, 0, normals);
if (!vertIdxs)
/* Draw per face (TODO: could use glMultiDrawArrays if available) */
for (i=0; i<numParts; i++)
glDrawArrays(vertexMode, i*numVertPerPart, numVertPerPart);
else
for (i=0; i<numParts; i++)
glDrawElements(vertexMode,numVertPerPart,GL_UNSIGNED_SHORT,vertIdxs+i*numVertPerPart);
if (vertIdxs2)
for (i=0; i<numParts2; i++)
glDrawElements(GL_LINE_LOOP,numVertPerPart2,GL_UNSIGNED_SHORT,vertIdxs2+i*numVertPerPart2);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
}
#endif
/* Version for OpenGL (ES) >= 2.0 */
static void fghDrawGeometryWire20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices,
GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode,
GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2,
GLint attribute_v_coord, GLint attribute_v_normal
)
{
GLuint vbo_coords = 0, vbo_normals = 0,
ibo_elements = 0, ibo_elements2 = 0;
GLsizei numVertIdxs = numParts * numVertPerPart;
GLsizei numVertIdxs2 = numParts2 * numVertPerPart2;
int i;
if (numVertices > 0 && attribute_v_coord != -1) {
fghGenBuffers(1, &vbo_coords);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords);
fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(vertices[0]),
vertices, FGH_STATIC_DRAW);
}
if (numVertices > 0 && attribute_v_normal != -1) {
fghGenBuffers(1, &vbo_normals);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals);
fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(normals[0]),
normals, FGH_STATIC_DRAW);
}
if (vertIdxs != NULL) {
fghGenBuffers(1, &ibo_elements);
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements);
fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs * sizeof(vertIdxs[0]),
vertIdxs, FGH_STATIC_DRAW);
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0);
}
if (vertIdxs2 != NULL) {
fghGenBuffers(1, &ibo_elements2);
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements2);
fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs2 * sizeof(vertIdxs2[0]),
vertIdxs2, FGH_STATIC_DRAW);
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0);
}
if (vbo_coords) {
fghEnableVertexAttribArray(attribute_v_coord);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords);
fghVertexAttribPointer(
attribute_v_coord, /* attribute */
3, /* number of elements per vertex, here (x,y,z) */
GL_FLOAT, /* the type of each element */
GL_FALSE, /* take our values as-is */
0, /* no extra data between each position */
0 /* offset of first element */
);
fghBindBuffer(FGH_ARRAY_BUFFER, 0);
}
if (vbo_normals) {
fghEnableVertexAttribArray(attribute_v_normal);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals);
fghVertexAttribPointer(
attribute_v_normal, /* attribute */
3, /* number of elements per vertex, here (x,y,z) */
GL_FLOAT, /* the type of each element */
GL_FALSE, /* take our values as-is */
0, /* no extra data between each position */
0 /* offset of first element */
);
fghBindBuffer(FGH_ARRAY_BUFFER, 0);
}
if (!vertIdxs) {
/* Draw per face (TODO: could use glMultiDrawArrays if available) */
for (i=0; i<numParts; i++)
glDrawArrays(vertexMode, i*numVertPerPart, numVertPerPart);
} else {
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements);
for (i=0; i<numParts; i++)
glDrawElements(vertexMode, numVertPerPart,
GL_UNSIGNED_SHORT, (GLvoid*)(sizeof(vertIdxs[0])*i*numVertPerPart));
/* Clean existing bindings before clean-up */
/* Android showed instability otherwise */
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0);
}
if (vertIdxs2) {
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements2);
static float t2 = 0;
t2 += 0.1;
if (t2 >= numParts2)
t2 = 0;
for (i=0; i<numParts2; i++)
glDrawElements(GL_LINE_LOOP, numVertPerPart2,
GL_UNSIGNED_SHORT, (GLvoid*)(sizeof(vertIdxs2[0])*i*numVertPerPart2));
/* Clean existing bindings before clean-up */
/* Android showed instability otherwise */
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0);
}
if (vbo_coords != 0)
fghDisableVertexAttribArray(attribute_v_coord);
if (vbo_normals != 0)
fghDisableVertexAttribArray(attribute_v_normal);
if (vbo_coords != 0)
fghDeleteBuffers(1, &vbo_coords);
if (vbo_normals != 0)
fghDeleteBuffers(1, &vbo_normals);
if (ibo_elements != 0)
fghDeleteBuffers(1, &ibo_elements);
if (ibo_elements2 != 0)
fghDeleteBuffers(1, &ibo_elements2);
}
static void fghDrawGeometryWire(GLfloat *vertices, GLfloat *normals, GLsizei numVertices,
GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode,
GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2
)
{
GLint attribute_v_coord = fgStructure.CurrentWindow->Window.attribute_v_coord;
GLint attribute_v_normal = fgStructure.CurrentWindow->Window.attribute_v_normal;
if (fgState.HasOpenGL20 && (attribute_v_coord != -1 || attribute_v_normal != -1))
/* User requested a 2.0 draw */
fghDrawGeometryWire20(vertices, normals, numVertices,
vertIdxs, numParts, numVertPerPart, vertexMode,
vertIdxs2, numParts2, numVertPerPart2,
attribute_v_coord, attribute_v_normal);
#ifndef GL_ES_VERSION_2_0
else
fghDrawGeometryWire11(vertices, normals,
vertIdxs, numParts, numVertPerPart, vertexMode,
vertIdxs2, numParts2, numVertPerPart2);
#endif
}
/* Draw the geometric shape with filled triangles
*
* - If the shape is naturally triangulated (numEdgePerFace==3), each
* vertex+normal pair is used only once, so no vertex indices.
*
* - If the shape was triangulated (DECOMPOSE_TO_TRIANGLE), some
* vertex+normal pairs are reused, so use vertex indices.
*/
/* Version for OpenGL (ES) 1.1 */
#ifndef GL_ES_VERSION_2_0
static void fghDrawGeometrySolid11(GLfloat *vertices, GLfloat *normals, GLushort *vertIdxs,
GLsizei numVertices, GLsizei numParts, GLsizei numVertIdxsPerPart)
{
int i;
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, vertices);
glNormalPointer(GL_FLOAT, 0, normals);
if (vertIdxs == NULL)
glDrawArrays(GL_TRIANGLES, 0, numVertices);
else
if (numParts>1)
for (i=0; i<numParts; i++)
glDrawElements(GL_TRIANGLE_STRIP, numVertIdxsPerPart, GL_UNSIGNED_SHORT, vertIdxs+i*numVertIdxsPerPart);
else
glDrawElements(GL_TRIANGLES, numVertIdxsPerPart, GL_UNSIGNED_SHORT, vertIdxs);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
}
#endif
/* Version for OpenGL (ES) >= 2.0 */
static void fghDrawGeometrySolid20(GLfloat *vertices, GLfloat *normals, GLushort *vertIdxs,
GLsizei numVertices, GLsizei numParts, GLsizei numVertIdxsPerPart,
GLint attribute_v_coord, GLint attribute_v_normal)
{
GLuint vbo_coords = 0, vbo_normals = 0, ibo_elements = 0;
GLsizei numVertIdxs = numParts * numVertIdxsPerPart;
int i;
if (numVertices > 0 && attribute_v_coord != -1) {
fghGenBuffers(1, &vbo_coords);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords);
fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(vertices[0]),
vertices, FGH_STATIC_DRAW);
fghBindBuffer(FGH_ARRAY_BUFFER, 0);
}
if (numVertices > 0 && attribute_v_normal != -1) {
fghGenBuffers(1, &vbo_normals);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals);
fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(normals[0]),
normals, FGH_STATIC_DRAW);
fghBindBuffer(FGH_ARRAY_BUFFER, 0);
}
if (vertIdxs != NULL) {
fghGenBuffers(1, &ibo_elements);
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements);
fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs * sizeof(vertIdxs[0]),
vertIdxs, FGH_STATIC_DRAW);
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0);
}
if (vbo_coords) {
fghEnableVertexAttribArray(attribute_v_coord);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords);
fghVertexAttribPointer(
attribute_v_coord, /* attribute */
3, /* number of elements per vertex, here (x,y,z) */
GL_FLOAT, /* the type of each element */
GL_FALSE, /* take our values as-is */
0, /* no extra data between each position */
0 /* offset of first element */
);
fghBindBuffer(FGH_ARRAY_BUFFER, 0);
};
if (vbo_normals) {
fghEnableVertexAttribArray(attribute_v_normal);
fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals);
fghVertexAttribPointer(
attribute_v_normal, /* attribute */
3, /* number of elements per vertex, here (x,y,z) */
GL_FLOAT, /* the type of each element */
GL_FALSE, /* take our values as-is */
0, /* no extra data between each position */
0 /* offset of first element */
);
fghBindBuffer(FGH_ARRAY_BUFFER, 0);
};
if (vertIdxs == NULL) {
glDrawArrays(GL_TRIANGLES, 0, numVertices);
} else {
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements);
if (numParts>1) {
for (i=0; i<numParts; i++) {
glDrawElements(GL_TRIANGLE_STRIP, numVertIdxsPerPart, GL_UNSIGNED_SHORT, (GLvoid*)(sizeof(vertIdxs[0])*i*numVertIdxsPerPart));
}
} else {
glDrawElements(GL_TRIANGLES, numVertIdxsPerPart, GL_UNSIGNED_SHORT, 0);
}
/* Clean existing bindings before clean-up */
/* Android showed instability otherwise */
fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0);
}
if (vbo_coords != 0)
fghDisableVertexAttribArray(attribute_v_coord);
if (vbo_normals != 0)
fghDisableVertexAttribArray(attribute_v_normal);
if (vbo_coords != 0)
fghDeleteBuffers(1, &vbo_coords);
if (vbo_normals != 0)
fghDeleteBuffers(1, &vbo_normals);
if (ibo_elements != 0)
fghDeleteBuffers(1, &ibo_elements);
}
static void fghDrawGeometrySolid(GLfloat *vertices, GLfloat *normals, GLushort *vertIdxs,
GLsizei numVertices, GLsizei numParts, GLsizei numVertIdxsPerPart)
{
GLint attribute_v_coord = fgStructure.CurrentWindow->Window.attribute_v_coord;
GLint attribute_v_normal = fgStructure.CurrentWindow->Window.attribute_v_normal;
if (fgState.HasOpenGL20 && (attribute_v_coord != -1 || attribute_v_normal != -1))
/* User requested a 2.0 draw */
fghDrawGeometrySolid20(vertices, normals, vertIdxs,
numVertices, numParts, numVertIdxsPerPart,
attribute_v_coord, attribute_v_normal);
#ifndef GL_ES_VERSION_2_0
else
fghDrawGeometrySolid11(vertices, normals, vertIdxs,
numVertices, numParts, numVertIdxsPerPart);
#endif
}
/* Shape decomposition to triangles
* We'll use glDrawElements to draw all shapes that are not naturally
* composed of triangles, so generate an index vector here, using the
* below sampling scheme.
* Be careful to keep winding of all triangles counter-clockwise,
* assuming that input has correct winding...
*/
static GLubyte vert4Decomp[6] = {0,1,2, 0,2,3}; /* quad : 4 input vertices, 6 output (2 triangles) */
static GLubyte vert5Decomp[9] = {0,1,2, 0,2,4, 4,2,3}; /* pentagon: 5 input vertices, 9 output (3 triangles) */
static void fghGenerateGeometryWithIndexArray(int numFaces, int numEdgePerFace, GLfloat *vertices, GLubyte *vertIndices, GLfloat *normals, GLfloat *vertOut, GLfloat *normOut, GLushort *vertIdxOut)
{
int i,j,numEdgeIdxPerFace;
GLubyte *vertSamps = NULL;
switch (numEdgePerFace)
{
case 3:
/* nothing to do here, we'll draw with glDrawArrays */
break;
case 4:
vertSamps = vert4Decomp;
numEdgeIdxPerFace = 6; /* 6 output vertices for each face */
break;
case 5:
vertSamps = vert5Decomp;
numEdgeIdxPerFace = 9; /* 9 output vertices for each face */
break;
}
/*
* Build array with vertices using vertex coordinates and vertex indices
* Do same for normals.
* Need to do this because of different normals at shared vertices.
*/
for (i=0; i<numFaces; i++)
{
int normIdx = i*3;
int faceIdxVertIdx = i*numEdgePerFace; /* index to first element of "row" in vertex indices */
for (j=0; j<numEdgePerFace; j++)
{
int outIdx = i*numEdgePerFace*3+j*3;
int vertIdx = vertIndices[faceIdxVertIdx+j]*3;
vertOut[outIdx ] = vertices[vertIdx ];
vertOut[outIdx+1] = vertices[vertIdx+1];
vertOut[outIdx+2] = vertices[vertIdx+2];
normOut[outIdx ] = normals [normIdx ];
normOut[outIdx+1] = normals [normIdx+1];
normOut[outIdx+2] = normals [normIdx+2];
}
/* generate vertex indices for each face */
if (vertSamps)
for (j=0; j<numEdgeIdxPerFace; j++)
vertIdxOut[i*numEdgeIdxPerFace+j] = faceIdxVertIdx + vertSamps[j];
}
}
static void fghGenerateGeometry(int numFaces, int numEdgePerFace, GLfloat *vertices, GLubyte *vertIndices, GLfloat *normals, GLfloat *vertOut, GLfloat *normOut)
{
/* This function does the same as fghGenerateGeometryWithIndexArray, just skipping the index array generation... */
fghGenerateGeometryWithIndexArray(numFaces, numEdgePerFace, vertices, vertIndices, normals, vertOut, normOut, NULL);
}
/* -- INTERNAL SETUP OF GEOMETRY --------------------------------------- */
/* -- stuff that can be cached -- */
/* Cache of input to glDrawArrays or glDrawElements
* In general, we build arrays with all vertices or normals.
* We cant compress this and use glDrawElements as all combinations of
* vertices and normals are unique.
*/
#define DECLARE_SHAPE_CACHE(name,nameICaps,nameCaps)\
static GLboolean name##Cached = FALSE;\
static GLfloat name##_verts[nameCaps##_VERT_ELEM_PER_OBJ];\
static GLfloat name##_norms[nameCaps##_VERT_ELEM_PER_OBJ];\
static void fgh##nameICaps##Generate()\
{\
fghGenerateGeometry(nameCaps##_NUM_FACES, nameCaps##_NUM_EDGE_PER_FACE,\
name##_v, name##_vi, name##_n,\
name##_verts, name##_norms);\
}
#define DECLARE_SHAPE_CACHE_DECOMPOSE_TO_TRIANGLE(name,nameICaps,nameCaps)\
static GLboolean name##Cached = FALSE;\
static GLfloat name##_verts[nameCaps##_VERT_ELEM_PER_OBJ];\
static GLfloat name##_norms[nameCaps##_VERT_ELEM_PER_OBJ];\
static GLushort name##_vertIdxs[nameCaps##_VERT_PER_OBJ_TRI];\
static void fgh##nameICaps##Generate()\
{\
fghGenerateGeometryWithIndexArray(nameCaps##_NUM_FACES, nameCaps##_NUM_EDGE_PER_FACE,\
name##_v, name##_vi, name##_n,\
name##_verts, name##_norms, name##_vertIdxs);\
}
/* -- Cube -- */
#define CUBE_NUM_VERT 8
#define CUBE_NUM_FACES 6
#define CUBE_NUM_EDGE_PER_FACE 4
#define CUBE_VERT_PER_OBJ (CUBE_NUM_FACES*CUBE_NUM_EDGE_PER_FACE)
#define CUBE_VERT_ELEM_PER_OBJ (CUBE_VERT_PER_OBJ*3)
#define CUBE_VERT_PER_OBJ_TRI (CUBE_VERT_PER_OBJ+CUBE_NUM_FACES*2) /* 2 extra edges per face when drawing quads as triangles */
/* Vertex Coordinates */
static GLfloat cube_v[CUBE_NUM_VERT*3] =
{
.5f, .5f, .5f,
-.5f, .5f, .5f,
-.5f,-.5f, .5f,
.5f,-.5f, .5f,
.5f,-.5f,-.5f,
.5f, .5f,-.5f,
-.5f, .5f,-.5f,
-.5f,-.5f,-.5f
};
/* Normal Vectors */
static GLfloat cube_n[CUBE_NUM_FACES*3] =
{
0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
-1.0f, 0.0f, 0.0f,
0.0f,-1.0f, 0.0f,
0.0f, 0.0f,-1.0f
};
/* Vertex indices, as quads, before triangulation */
static GLubyte cube_vi[CUBE_VERT_PER_OBJ] =
{
0,1,2,3,
0,3,4,5,
0,5,6,1,
1,6,7,2,
7,4,3,2,
4,7,6,5
};
DECLARE_SHAPE_CACHE_DECOMPOSE_TO_TRIANGLE(cube,Cube,CUBE)
/* -- Dodecahedron -- */
/* Magic Numbers: It is possible to create a dodecahedron by attaching two
* pentagons to each face of of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
* x = 0.61803398875 and z = 1.61803398875.
*/
#define DODECAHEDRON_NUM_VERT 20
#define DODECAHEDRON_NUM_FACES 12
#define DODECAHEDRON_NUM_EDGE_PER_FACE 5
#define DODECAHEDRON_VERT_PER_OBJ (DODECAHEDRON_NUM_FACES*DODECAHEDRON_NUM_EDGE_PER_FACE)
#define DODECAHEDRON_VERT_ELEM_PER_OBJ (DODECAHEDRON_VERT_PER_OBJ*3)
#define DODECAHEDRON_VERT_PER_OBJ_TRI (DODECAHEDRON_VERT_PER_OBJ+DODECAHEDRON_NUM_FACES*4) /* 4 extra edges per face when drawing pentagons as triangles */
/* Vertex Coordinates */
static GLfloat dodecahedron_v[DODECAHEDRON_NUM_VERT*3] =
{
0.0f, 1.61803398875f, 0.61803398875f,
- 1.0f, 1.0f, 1.0f,
-0.61803398875f, 0.0f, 1.61803398875f,
0.61803398875f, 0.0f, 1.61803398875f,
1.0f, 1.0f, 1.0f,
0.0f, 1.61803398875f, -0.61803398875f,
1.0f, 1.0f, - 1.0f,
0.61803398875f, 0.0f, -1.61803398875f,
-0.61803398875f, 0.0f, -1.61803398875f,
- 1.0f, 1.0f, - 1.0f,
0.0f, -1.61803398875f, 0.61803398875f,
1.0f, - 1.0f, 1.0f,
- 1.0f, - 1.0f, 1.0f,
0.0f, -1.61803398875f, -0.61803398875f,
- 1.0f, - 1.0f, - 1.0f,
1.0f, - 1.0f, - 1.0f,
1.61803398875f, -0.61803398875f, 0.0f,
1.61803398875f, 0.61803398875f, 0.0f,
-1.61803398875f, 0.61803398875f, 0.0f,
-1.61803398875f, -0.61803398875f, 0.0f
};
/* Normal Vectors */
static GLfloat dodecahedron_n[DODECAHEDRON_NUM_FACES*3] =
{
0.0f, 0.525731112119f, 0.850650808354f,
0.0f, 0.525731112119f, -0.850650808354f,
0.0f, -0.525731112119f, 0.850650808354f,
0.0f, -0.525731112119f, -0.850650808354f,
0.850650808354f, 0.0f, 0.525731112119f,
-0.850650808354f, 0.0f, 0.525731112119f,
0.850650808354f, 0.0f, -0.525731112119f,
-0.850650808354f, 0.0f, -0.525731112119f,
0.525731112119f, 0.850650808354f, 0.0f,
0.525731112119f, -0.850650808354f, 0.0f,
-0.525731112119f, 0.850650808354f, 0.0f,
-0.525731112119f, -0.850650808354f, 0.0f,
};
/* Vertex indices */
static GLubyte dodecahedron_vi[DODECAHEDRON_VERT_PER_OBJ] =
{
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 3, 2, 12,
13, 14, 8, 7, 15,
3, 11, 16, 17, 4,
2, 1, 18, 19, 12,
7, 6, 17, 16, 15,
8, 14, 19, 18, 9,
17, 6, 5, 0, 4,
16, 11, 10, 13, 15,
18, 1, 0, 5, 9,
19, 14, 13, 10, 12
};
DECLARE_SHAPE_CACHE_DECOMPOSE_TO_TRIANGLE(dodecahedron,Dodecahedron,DODECAHEDRON)
/* -- Icosahedron -- */
#define ICOSAHEDRON_NUM_VERT 12
#define ICOSAHEDRON_NUM_FACES 20
#define ICOSAHEDRON_NUM_EDGE_PER_FACE 3
#define ICOSAHEDRON_VERT_PER_OBJ (ICOSAHEDRON_NUM_FACES*ICOSAHEDRON_NUM_EDGE_PER_FACE)
#define ICOSAHEDRON_VERT_ELEM_PER_OBJ (ICOSAHEDRON_VERT_PER_OBJ*3)
#define ICOSAHEDRON_VERT_PER_OBJ_TRI ICOSAHEDRON_VERT_PER_OBJ
/* Vertex Coordinates */
static GLfloat icosahedron_v[ICOSAHEDRON_NUM_VERT*3] =
{
1.0f, 0.0f, 0.0f,
0.447213595500f, 0.894427191000f, 0.0f,
0.447213595500f, 0.276393202252f, 0.850650808354f,
0.447213595500f, -0.723606797748f, 0.525731112119f,
0.447213595500f, -0.723606797748f, -0.525731112119f,
0.447213595500f, 0.276393202252f, -0.850650808354f,
-0.447213595500f, -0.894427191000f, 0.0f,
-0.447213595500f, -0.276393202252f, 0.850650808354f,
-0.447213595500f, 0.723606797748f, 0.525731112119f,
-0.447213595500f, 0.723606797748f, -0.525731112119f,
-0.447213595500f, -0.276393202252f, -0.850650808354f,
- 1.0f, 0.0f, 0.0f
};
/* Normal Vectors:
* icosahedron_n[i][0] = ( icosahedron_v[icosahedron_vi[i][1]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) * ( icosahedron_v[icosahedron_vi[i][2]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) - ( icosahedron_v[icosahedron_vi[i][1]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) * ( icosahedron_v[icosahedron_vi[i][2]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) ;
* icosahedron_n[i][1] = ( icosahedron_v[icosahedron_vi[i][1]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) * ( icosahedron_v[icosahedron_vi[i][2]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) - ( icosahedron_v[icosahedron_vi[i][1]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) * ( icosahedron_v[icosahedron_vi[i][2]][2] - icosahedron_v[icosahedron_vi[i][0]][2] ) ;
* icosahedron_n[i][2] = ( icosahedron_v[icosahedron_vi[i][1]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) * ( icosahedron_v[icosahedron_vi[i][2]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) - ( icosahedron_v[icosahedron_vi[i][1]][1] - icosahedron_v[icosahedron_vi[i][0]][1] ) * ( icosahedron_v[icosahedron_vi[i][2]][0] - icosahedron_v[icosahedron_vi[i][0]][0] ) ;
*/
static GLfloat icosahedron_n[ICOSAHEDRON_NUM_FACES*3] =
{
0.760845213037948f, 0.470228201835026f, 0.341640786498800f,
0.760845213036861f, -0.179611190632978f, 0.552786404500000f,
0.760845213033849f, -0.581234022404097f, 0.0f,
0.760845213036861f, -0.179611190632978f, -0.552786404500000f,
0.760845213037948f, 0.470228201835026f, -0.341640786498800f,
0.179611190628666f, 0.760845213037948f, 0.552786404498399f,
0.179611190634277f, -0.290617011204044f, 0.894427191000000f,
0.179611190633958f, -0.940456403667806f, 0.0f,
0.179611190634278f, -0.290617011204044f, -0.894427191000000f,
0.179611190628666f, 0.760845213037948f, -0.552786404498399f,
-0.179611190633958f, 0.940456403667806f, 0.0f,
-0.179611190634277f, 0.290617011204044f, 0.894427191000000f,
-0.179611190628666f, -0.760845213037948f, 0.552786404498399f,
-0.179611190628666f, -0.760845213037948f, -0.552786404498399f,
-0.179611190634277f, 0.290617011204044f, -0.894427191000000f,
-0.760845213036861f, 0.179611190632978f, -0.552786404500000f,
-0.760845213033849f, 0.581234022404097f, 0.0f,
-0.760845213036861f, 0.179611190632978f, 0.552786404500000f,
-0.760845213037948f, -0.470228201835026f, 0.341640786498800f,
-0.760845213037948f, -0.470228201835026f, -0.341640786498800f,
};
/* Vertex indices */
static GLubyte icosahedron_vi[ICOSAHEDRON_VERT_PER_OBJ] =
{
0, 1, 2 ,
0, 2, 3 ,
0, 3, 4 ,
0, 4, 5 ,
0, 5, 1 ,
1, 8, 2 ,
2, 7, 3 ,
3, 6, 4 ,
4, 10, 5 ,
5, 9, 1 ,
1, 9, 8 ,
2, 8, 7 ,
3, 7, 6 ,
4, 6, 10 ,
5, 10, 9 ,
11, 9, 10 ,
11, 8, 9 ,
11, 7, 8 ,
11, 6, 7 ,
11, 10, 6
};
DECLARE_SHAPE_CACHE(icosahedron,Icosahedron,ICOSAHEDRON)
/* -- Octahedron -- */
#define OCTAHEDRON_NUM_VERT 6
#define OCTAHEDRON_NUM_FACES 8
#define OCTAHEDRON_NUM_EDGE_PER_FACE 3
#define OCTAHEDRON_VERT_PER_OBJ (OCTAHEDRON_NUM_FACES*OCTAHEDRON_NUM_EDGE_PER_FACE)
#define OCTAHEDRON_VERT_ELEM_PER_OBJ (OCTAHEDRON_VERT_PER_OBJ*3)
#define OCTAHEDRON_VERT_PER_OBJ_TRI OCTAHEDRON_VERT_PER_OBJ
/* Vertex Coordinates */
static GLfloat octahedron_v[OCTAHEDRON_NUM_VERT*3] =
{
1.f, 0.f, 0.f,
0.f, 1.f, 0.f,
0.f, 0.f, 1.f,
-1.f, 0.f, 0.f,
0.f, -1.f, 0.f,
0.f, 0.f, -1.f,
};
/* Normal Vectors */
static GLfloat octahedron_n[OCTAHEDRON_NUM_FACES*3] =
{
0.577350269189f, 0.577350269189f, 0.577350269189f, /* sqrt(1/3) */
0.577350269189f, 0.577350269189f,-0.577350269189f,
0.577350269189f,-0.577350269189f, 0.577350269189f,
0.577350269189f,-0.577350269189f,-0.577350269189f,
-0.577350269189f, 0.577350269189f, 0.577350269189f,
-0.577350269189f, 0.577350269189f,-0.577350269189f,
-0.577350269189f,-0.577350269189f, 0.577350269189f,
-0.577350269189f,-0.577350269189f,-0.577350269189f
};
/* Vertex indices */
static GLubyte octahedron_vi[OCTAHEDRON_VERT_PER_OBJ] =
{
0, 1, 2,
0, 5, 1,
0, 2, 4,
0, 4, 5,
3, 2, 1,
3, 1, 5,
3, 4, 2,
3, 5, 4
};
DECLARE_SHAPE_CACHE(octahedron,Octahedron,OCTAHEDRON)
/* -- RhombicDodecahedron -- */
#define RHOMBICDODECAHEDRON_NUM_VERT 14
#define RHOMBICDODECAHEDRON_NUM_FACES 12
#define RHOMBICDODECAHEDRON_NUM_EDGE_PER_FACE 4
#define RHOMBICDODECAHEDRON_VERT_PER_OBJ (RHOMBICDODECAHEDRON_NUM_FACES*RHOMBICDODECAHEDRON_NUM_EDGE_PER_FACE)
#define RHOMBICDODECAHEDRON_VERT_ELEM_PER_OBJ (RHOMBICDODECAHEDRON_VERT_PER_OBJ*3)
#define RHOMBICDODECAHEDRON_VERT_PER_OBJ_TRI (RHOMBICDODECAHEDRON_VERT_PER_OBJ+RHOMBICDODECAHEDRON_NUM_FACES*2) /* 2 extra edges per face when drawing quads as triangles */
/* Vertex Coordinates */
static GLfloat rhombicdodecahedron_v[RHOMBICDODECAHEDRON_NUM_VERT*3] =
{
0.0f, 0.0f, 1.0f,
0.707106781187f, 0.0f, 0.5f,
0.0f, 0.707106781187f, 0.5f,
-0.707106781187f, 0.0f, 0.5f,
0.0f, -0.707106781187f, 0.5f,
0.707106781187f, 0.707106781187f, 0.0f,
-0.707106781187f, 0.707106781187f, 0.0f,
-0.707106781187f, -0.707106781187f, 0.0f,
0.707106781187f, -0.707106781187f, 0.0f,
0.707106781187f, 0.0f, -0.5f,
0.0f, 0.707106781187f, -0.5f,
-0.707106781187f, 0.0f, -0.5f,
0.0f, -0.707106781187f, -0.5f,
0.0f, 0.0f, -1.0f
};
/* Normal Vectors */
static GLfloat rhombicdodecahedron_n[RHOMBICDODECAHEDRON_NUM_FACES*3] =
{
0.353553390594f, 0.353553390594f, 0.5f,
-0.353553390594f, 0.353553390594f, 0.5f,
-0.353553390594f, -0.353553390594f, 0.5f,
0.353553390594f, -0.353553390594f, 0.5f,
0.0f, 1.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
0.0f, - 1.0f, 0.0f,
1.0f, 0.0f, 0.0f,
0.353553390594f, 0.353553390594f, -0.5f,
-0.353553390594f, 0.353553390594f, -0.5f,
-0.353553390594f, -0.353553390594f, -0.5f,
0.353553390594f, -0.353553390594f, -0.5f
};
/* Vertex indices */
static GLubyte rhombicdodecahedron_vi[RHOMBICDODECAHEDRON_VERT_PER_OBJ] =
{
0, 1, 5, 2,
0, 2, 6, 3,
0, 3, 7, 4,
0, 4, 8, 1,
5, 10, 6, 2,
6, 11, 7, 3,
7, 12, 8, 4,
8, 9, 5, 1,
5, 9, 13, 10,
6, 10, 13, 11,
7, 11, 13, 12,
8, 12, 13, 9
};
DECLARE_SHAPE_CACHE_DECOMPOSE_TO_TRIANGLE(rhombicdodecahedron,RhombicDodecahedron,RHOMBICDODECAHEDRON)
/* -- Tetrahedron -- */
/* Magic Numbers: r0 = ( 1, 0, 0 )
* r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
* r2 = ( -1/3, - sqrt(2) / 3, sqrt(6) / 3 )
* r3 = ( -1/3, - sqrt(2) / 3, -sqrt(6) / 3 )
* |r0| = |r1| = |r2| = |r3| = 1
* Distance between any two points is 2 sqrt(6) / 3
*
* Normals: The unit normals are simply the negative of the coordinates of the point not on the surface.
*/
#define TETRAHEDRON_NUM_VERT 4
#define TETRAHEDRON_NUM_FACES 4
#define TETRAHEDRON_NUM_EDGE_PER_FACE 3
#define TETRAHEDRON_VERT_PER_OBJ (TETRAHEDRON_NUM_FACES*TETRAHEDRON_NUM_EDGE_PER_FACE)
#define TETRAHEDRON_VERT_ELEM_PER_OBJ (TETRAHEDRON_VERT_PER_OBJ*3)
#define TETRAHEDRON_VERT_PER_OBJ_TRI TETRAHEDRON_VERT_PER_OBJ
/* Vertex Coordinates */
static GLfloat tetrahedron_v[TETRAHEDRON_NUM_VERT*3] =
{
1.0f, 0.0f, 0.0f,
-0.333333333333f, 0.942809041582f, 0.0f,
-0.333333333333f, -0.471404520791f, 0.816496580928f,
-0.333333333333f, -0.471404520791f, -0.816496580928f
};
/* Normal Vectors */
static GLfloat tetrahedron_n[TETRAHEDRON_NUM_FACES*3] =
{
- 1.0f, 0.0f, 0.0f,
0.333333333333f, -0.942809041582f, 0.0f,
0.333333333333f, 0.471404520791f, -0.816496580928f,
0.333333333333f, 0.471404520791f, 0.816496580928f
};
/* Vertex indices */
static GLubyte tetrahedron_vi[TETRAHEDRON_VERT_PER_OBJ] =
{
1, 3, 2,
0, 2, 3,
0, 3, 1,
0, 1, 2
};
DECLARE_SHAPE_CACHE(tetrahedron,Tetrahedron,TETRAHEDRON)
/* -- Sierpinski Sponge -- */
static unsigned int ipow (int x, unsigned int y)
{
return y==0? 1: y==1? x: (y%2? x: 1) * ipow(x*x, y/2);
}
static void fghSierpinskiSpongeGenerate ( int numLevels, double offset[3], GLfloat scale, GLfloat* vertices, GLfloat* normals )
{
int i, j;
if ( numLevels == 0 )
{
for (i=0; i<TETRAHEDRON_NUM_FACES; i++)
{
int normIdx = i*3;
int faceIdxVertIdx = i*TETRAHEDRON_NUM_EDGE_PER_FACE;
for (j=0; j<TETRAHEDRON_NUM_EDGE_PER_FACE; j++)
{
int outIdx = i*TETRAHEDRON_NUM_EDGE_PER_FACE*3+j*3;
int vertIdx = tetrahedron_vi[faceIdxVertIdx+j]*3;
vertices[outIdx ] = (GLfloat)offset[0] + scale * tetrahedron_v[vertIdx ];
vertices[outIdx+1] = (GLfloat)offset[1] + scale * tetrahedron_v[vertIdx+1];
vertices[outIdx+2] = (GLfloat)offset[2] + scale * tetrahedron_v[vertIdx+2];
normals [outIdx ] = tetrahedron_n[normIdx ];
normals [outIdx+1] = tetrahedron_n[normIdx+1];
normals [outIdx+2] = tetrahedron_n[normIdx+2];
}
}
}
else if ( numLevels > 0 )
{
double local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
unsigned int stride = ipow(4,--numLevels)*TETRAHEDRON_VERT_ELEM_PER_OBJ;
scale /= 2.0 ;
for ( i = 0 ; i < TETRAHEDRON_NUM_FACES ; i++ )
{
int idx = i*3;
local_offset[0] = offset[0] + scale * tetrahedron_v[idx ];
local_offset[1] = offset[1] + scale * tetrahedron_v[idx+1];
local_offset[2] = offset[2] + scale * tetrahedron_v[idx+2];
fghSierpinskiSpongeGenerate ( numLevels, local_offset, scale, vertices+i*stride, normals+i*stride );
}
}
}
/* -- Now the various shapes involving circles -- */
/*
* Compute lookup table of cos and sin values forming a circle
* (or half circle if halfCircle==TRUE)
*
* Notes:
* It is the responsibility of the caller to free these tables
* The size of the table is (n+1) to form a connected loop
* The last entry is exactly the same as the first
* The sign of n can be flipped to get the reverse loop
*/
static void fghCircleTable(GLfloat **sint, GLfloat **cost, const int n, const GLboolean halfCircle)
{
int i;
/* Table size, the sign of n flips the circle direction */
const int size = abs(n);
/* Determine the angle between samples */
const GLfloat angle = (halfCircle?1:2)*(GLfloat)M_PI/(GLfloat)( ( n == 0 ) ? 1 : n );
/* Allocate memory for n samples, plus duplicate of first entry at the end */
*sint = malloc(sizeof(GLfloat) * (size+1));
*cost = malloc(sizeof(GLfloat) * (size+1));
/* Bail out if memory allocation fails, fgError never returns */
if (!(*sint) || !(*cost))
{
free(*sint);
free(*cost);
fgError("Failed to allocate memory in fghCircleTable");
}
/* Compute cos and sin around the circle */
(*sint)[0] = 0.0;
(*cost)[0] = 1.0;
for (i=1; i<size; i++)
{
(*sint)[i] = sinf(angle*i);
(*cost)[i] = cosf(angle*i);
}
if (halfCircle)
{
(*sint)[size] = 0.0f; /* sin PI */
(*cost)[size] = -1.0f; /* cos PI */
}
else
{
/* Last sample is duplicate of the first (sin or cos of 2 PI) */
(*sint)[size] = (*sint)[0];
(*cost)[size] = (*cost)[0];
}
}
static void fghGenerateSphere(GLfloat radius, GLint slices, GLint stacks, GLfloat **vertices, GLfloat **normals, int* nVert)
{
int i,j;
int idx = 0; /* idx into vertex/normal buffer */
GLfloat x,y,z;
/* Pre-computed circle */
GLfloat *sint1,*cost1;
GLfloat *sint2,*cost2;
/* number of unique vertices */
if (slices==0 || stacks<2)
{
/* nothing to generate */
*nVert = 0;
return;
}
*nVert = slices*(stacks-1)+2;
if ((*nVert) > 65535) /* TODO: must have a better solution than this low limit, at least for architectures where gluint is available */
fgWarning("fghGenerateSphere: too many slices or stacks requested, indices will wrap");
/* precompute values on unit circle */
fghCircleTable(&sint1,&cost1,-slices,FALSE);
fghCircleTable(&sint2,&cost2, stacks,TRUE);
/* Allocate vertex and normal buffers, bail out if memory allocation fails */
*vertices = malloc((*nVert)*3*sizeof(GLfloat));
*normals = malloc((*nVert)*3*sizeof(GLfloat));
if (!(*vertices) || !(*normals))
{
free(*vertices);
free(*normals);
fgError("Failed to allocate memory in fghGenerateSphere");
}
/* top */
(*vertices)[0] = 0.f;
(*vertices)[1] = 0.f;
(*vertices)[2] = radius;
(*normals )[0] = 0.f;
(*normals )[1] = 0.f;
(*normals )[2] = 1.f;
idx = 3;
/* each stack */
for( i=1; i<stacks; i++ )
{
for(j=0; j<slices; j++, idx+=3)
{
x = cost1[j]*sint2[i];
y = sint1[j]*sint2[i];
z = cost2[i];
(*vertices)[idx ] = x*radius;
(*vertices)[idx+1] = y*radius;
(*vertices)[idx+2] = z*radius;
(*normals )[idx ] = x;
(*normals )[idx+1] = y;
(*normals )[idx+2] = z;
}
}
/* bottom */
(*vertices)[idx ] = 0.f;
(*vertices)[idx+1] = 0.f;
(*vertices)[idx+2] = -radius;
(*normals )[idx ] = 0.f;
(*normals )[idx+1] = 0.f;
(*normals )[idx+2] = -1.f;
/* Done creating vertices, release sin and cos tables */
free(sint1);
free(cost1);
free(sint2);
free(cost2);
}
void fghGenerateCone(
GLfloat base, GLfloat height, GLint slices, GLint stacks, /* input */
GLfloat **vertices, GLfloat **normals, int* nVert /* output */
)
{
int i,j;
int idx = 0; /* idx into vertex/normal buffer */
/* Pre-computed circle */
GLfloat *sint,*cost;
/* Step in z and radius as stacks are drawn. */
GLfloat z = 0;
GLfloat r = (GLfloat)base;
const GLfloat zStep = (GLfloat)height / ( ( stacks > 0 ) ? stacks : 1 );
const GLfloat rStep = (GLfloat)base / ( ( stacks > 0 ) ? stacks : 1 );
/* Scaling factors for vertex normals */
const GLfloat cosn = ( (GLfloat)height / sqrtf( height * height + base * base ));
const GLfloat sinn = ( (GLfloat)base / sqrtf( height * height + base * base ));
/* number of unique vertices */
if (slices==0 || stacks<1)
{
/* nothing to generate */
*nVert = 0;
return;
}
*nVert = slices*(stacks+2)+1; /* need an extra stack for closing off bottom with correct normals */
if ((*nVert) > 65535)
fgWarning("fghGenerateCone: too many slices or stacks requested, indices will wrap");
/* Pre-computed circle */
fghCircleTable(&sint,&cost,-slices,FALSE);
/* Allocate vertex and normal buffers, bail out if memory allocation fails */
*vertices = malloc((*nVert)*3*sizeof(GLfloat));
*normals = malloc((*nVert)*3*sizeof(GLfloat));
if (!(*vertices) || !(*normals))
{
free(*vertices);
free(*normals);
fgError("Failed to allocate memory in fghGenerateSphere");
}
/* bottom */
(*vertices)[0] = 0.f;
(*vertices)[1] = 0.f;
(*vertices)[2] = z;
(*normals )[0] = 0.f;
(*normals )[1] = 0.f;
(*normals )[2] = -1.f;
idx = 3;
/* other on bottom (get normals right) */
for (j=0; j<slices; j++, idx+=3)
{
(*vertices)[idx ] = cost[j]*r;
(*vertices)[idx+1] = sint[j]*r;
(*vertices)[idx+2] = z;
(*normals )[idx ] = 0.f;
(*normals )[idx+1] = 0.f;
(*normals )[idx+2] = -1.f;
}
/* each stack */
for (i=0; i<stacks+1; i++ )
{
for (j=0; j<slices; j++, idx+=3)
{
(*vertices)[idx ] = cost[j]*r;
(*vertices)[idx+1] = sint[j]*r;
(*vertices)[idx+2] = z;
(*normals )[idx ] = cost[j]*sinn;
(*normals )[idx+1] = sint[j]*sinn;
(*normals )[idx+2] = cosn;
}
z += zStep;
r -= rStep;
}
/* Release sin and cos tables */
free(sint);
free(cost);
}
void fghGenerateCylinder(
GLfloat radius, GLfloat height, GLint slices, GLint stacks, /* input */
GLfloat **vertices, GLfloat **normals, int* nVert /* output */
)
{
int i,j;
int idx = 0; /* idx into vertex/normal buffer */
/* Step in z as stacks are drawn. */
GLfloat radf = (GLfloat)radius;
GLfloat z;
const GLfloat zStep = (GLfloat)height / ( ( stacks > 0 ) ? stacks : 1 );
/* Pre-computed circle */
GLfloat *sint,*cost;
/* number of unique vertices */
if (slices==0 || stacks<1)
{
/* nothing to generate */
*nVert = 0;
return;
}
*nVert = slices*(stacks+3)+2; /* need two extra stacks for closing off top and bottom with correct normals */
if ((*nVert) > 65535)
fgWarning("fghGenerateCylinder: too many slices or stacks requested, indices will wrap");
/* Pre-computed circle */
fghCircleTable(&sint,&cost,-slices,FALSE);
/* Allocate vertex and normal buffers, bail out if memory allocation fails */
*vertices = malloc((*nVert)*3*sizeof(GLfloat));
*normals = malloc((*nVert)*3*sizeof(GLfloat));
if (!(*vertices) || !(*normals))
{
free(*vertices);
free(*normals);
fgError("Failed to allocate memory in fghGenerateCylinder");
}
z=0;
/* top on Z-axis */
(*vertices)[0] = 0.f;
(*vertices)[1] = 0.f;
(*vertices)[2] = 0.f;
(*normals )[0] = 0.f;
(*normals )[1] = 0.f;
(*normals )[2] = -1.f;
idx = 3;
/* other on top (get normals right) */
for (j=0; j<slices; j++, idx+=3)
{
(*vertices)[idx ] = cost[j]*radf;
(*vertices)[idx+1] = sint[j]*radf;
(*vertices)[idx+2] = z;
(*normals )[idx ] = 0.f;
(*normals )[idx+1] = 0.f;
(*normals )[idx+2] = -1.f;
}
/* each stack */
for (i=0; i<stacks+1; i++ )
{
for (j=0; j<slices; j++, idx+=3)
{
(*vertices)[idx ] = cost[j]*radf;
(*vertices)[idx+1] = sint[j]*radf;
(*vertices)[idx+2] = z;
(*normals )[idx ] = cost[j];
(*normals )[idx+1] = sint[j];
(*normals )[idx+2] = 0.f;
}
z += zStep;
}
/* other on bottom (get normals right) */
z -= zStep;
for (j=0; j<slices; j++, idx+=3)
{
(*vertices)[idx ] = cost[j]*radf;
(*vertices)[idx+1] = sint[j]*radf;
(*vertices)[idx+2] = z;
(*normals )[idx ] = 0.f;
(*normals )[idx+1] = 0.f;
(*normals )[idx+2] = 1.f;
}
/* bottom */
(*vertices)[idx ] = 0.f;
(*vertices)[idx+1] = 0.f;
(*vertices)[idx+2] = height;
(*normals )[idx ] = 0.f;
(*normals )[idx+1] = 0.f;
(*normals )[idx+2] = 1.f;
/* Release sin and cos tables */
free(sint);
free(cost);
}
void fghGenerateTorus(
double dInnerRadius, double dOuterRadius, GLint nSides, GLint nRings, /* input */
GLfloat **vertices, GLfloat **normals, int* nVert /* output */
)
{
GLfloat iradius = (float)dInnerRadius;
GLfloat oradius = (float)dOuterRadius;
int i, j;
/* Pre-computed circle */
GLfloat *spsi, *cpsi;
GLfloat *sphi, *cphi;
/* number of unique vertices */
if (nSides<2 || nRings<2)
{
/* nothing to generate */
*nVert = 0;
return;
}
*nVert = nSides * nRings;
if ((*nVert) > 65535)
fgWarning("fghGenerateTorus: too many slices or stacks requested, indices will wrap");
/* precompute values on unit circle */
fghCircleTable(&spsi,&cpsi, nRings,FALSE);
fghCircleTable(&sphi,&cphi,-nSides,FALSE);
/* Allocate vertex and normal buffers, bail out if memory allocation fails */
*vertices = malloc((*nVert)*3*sizeof(GLfloat));
*normals = malloc((*nVert)*3*sizeof(GLfloat));
if (!(*vertices) || !(*normals))
{
free(*vertices);
free(*normals);
fgError("Failed to allocate memory in fghGenerateTorus");
}
for( j=0; j<nRings; j++ )
{
for( i=0; i<nSides; i++ )
{
int offset = 3 * ( j * nSides + i ) ;
(*vertices)[offset ] = cpsi[j] * ( oradius + cphi[i] * iradius ) ;
(*vertices)[offset+1] = spsi[j] * ( oradius + cphi[i] * iradius ) ;
(*vertices)[offset+2] = sphi[i] * iradius ;
(*normals )[offset ] = cpsi[j] * cphi[i] ;
(*normals )[offset+1] = spsi[j] * cphi[i] ;
(*normals )[offset+2] = sphi[i] ;
}
}
/* Release sin and cos tables */
free(spsi);
free(cpsi);
free(sphi);
free(cphi);
}
/* -- INTERNAL DRAWING functions --------------------------------------- */
#define _DECLARE_INTERNAL_DRAW_DO_DECLARE(name,nameICaps,nameCaps,vertIdxs)\
static void fgh##nameICaps( GLboolean useWireMode )\
{\
if (!name##Cached)\
{\
fgh##nameICaps##Generate();\
name##Cached = GL_TRUE;\
}\
\
if (useWireMode)\
{\
fghDrawGeometryWire (name##_verts,name##_norms,nameCaps##_VERT_PER_OBJ, \
NULL,nameCaps##_NUM_FACES,nameCaps##_NUM_EDGE_PER_FACE,GL_LINE_LOOP,\
NULL,0,0);\
}\
else\
{\
fghDrawGeometrySolid(name##_verts,name##_norms,vertIdxs,\
nameCaps##_VERT_PER_OBJ, 1, nameCaps##_VERT_PER_OBJ_TRI); \
}\
}
#define DECLARE_INTERNAL_DRAW(name,nameICaps,nameCaps) _DECLARE_INTERNAL_DRAW_DO_DECLARE(name,nameICaps,nameCaps,NULL)
#define DECLARE_INTERNAL_DRAW_DECOMPOSED_TO_TRIANGLE(name,nameICaps,nameCaps) _DECLARE_INTERNAL_DRAW_DO_DECLARE(name,nameICaps,nameCaps,name##_vertIdxs)
static void fghCube( GLfloat dSize, GLboolean useWireMode )
{
GLfloat *vertices;
if (!cubeCached)
{
fghCubeGenerate();
cubeCached = GL_TRUE;
}
if (dSize!=1.f)
{
/* Need to build new vertex list containing vertices for cube of different size */
int i;
vertices = malloc(CUBE_VERT_ELEM_PER_OBJ * sizeof(GLfloat));
/* Bail out if memory allocation fails, fgError never returns */
if (!vertices)
{
free(vertices);
fgError("Failed to allocate memory in fghCube");
}
for (i=0; i<CUBE_VERT_ELEM_PER_OBJ; i++)
vertices[i] = dSize*cube_verts[i];
}
else
vertices = cube_verts;
if (useWireMode)
fghDrawGeometryWire(vertices, cube_norms, CUBE_VERT_PER_OBJ,
NULL,CUBE_NUM_FACES, CUBE_NUM_EDGE_PER_FACE,GL_LINE_LOOP,
NULL,0,0);
else
fghDrawGeometrySolid(vertices, cube_norms, cube_vertIdxs,
CUBE_VERT_PER_OBJ, 1, CUBE_VERT_PER_OBJ_TRI);
if (dSize!=1.f)
/* cleanup allocated memory */
free(vertices);
}
DECLARE_INTERNAL_DRAW_DECOMPOSED_TO_TRIANGLE(dodecahedron,Dodecahedron,DODECAHEDRON)
DECLARE_INTERNAL_DRAW(icosahedron,Icosahedron,ICOSAHEDRON)
DECLARE_INTERNAL_DRAW(octahedron,Octahedron,OCTAHEDRON)
DECLARE_INTERNAL_DRAW_DECOMPOSED_TO_TRIANGLE(rhombicdodecahedron,RhombicDodecahedron,RHOMBICDODECAHEDRON)
DECLARE_INTERNAL_DRAW(tetrahedron,Tetrahedron,TETRAHEDRON)
static void fghSierpinskiSponge ( int numLevels, double offset[3], GLfloat scale, GLboolean useWireMode )
{
GLfloat *vertices;
GLfloat * normals;
GLsizei numTetr = numLevels<0? 0 : ipow(4,numLevels); /* No sponge for numLevels below 0 */
GLsizei numVert = numTetr*TETRAHEDRON_VERT_PER_OBJ;
GLsizei numFace = numTetr*TETRAHEDRON_NUM_FACES;
if (numTetr)
{
/* Allocate memory */
vertices = malloc(numVert*3 * sizeof(GLfloat));
normals = malloc(numVert*3 * sizeof(GLfloat));
/* Bail out if memory allocation fails, fgError never returns */
if (!vertices || !normals)
{
free(vertices);
free(normals);
fgError("Failed to allocate memory in fghSierpinskiSponge");
}
/* Generate elements */
fghSierpinskiSpongeGenerate ( numLevels, offset, scale, vertices, normals );
/* Draw and cleanup */
if (useWireMode)
fghDrawGeometryWire (vertices,normals,numVert,
NULL,numFace,TETRAHEDRON_NUM_EDGE_PER_FACE,GL_LINE_LOOP,
NULL,0,0);
else
fghDrawGeometrySolid(vertices,normals,NULL,numVert,1,0);
free(vertices);
free(normals );
}
}
static void fghSphere( double radius, GLint slices, GLint stacks, GLboolean useWireMode )
{
int i,j,idx, nVert;
GLfloat *vertices, *normals;
/* Generate vertices and normals */
fghGenerateSphere((GLfloat)radius,slices,stacks,&vertices,&normals,&nVert);
if (nVert==0)
/* nothing to draw */
return;
if (useWireMode)
{
GLushort *sliceIdx, *stackIdx;
/* First, generate vertex index arrays for drawing with glDrawElements
* We have a bunch of line_loops to draw for each stack, and a
* bunch for each slice.
*/
sliceIdx = malloc(slices*(stacks+1)*sizeof(GLushort));
stackIdx = malloc(slices*(stacks-1)*sizeof(GLushort));
if (!(stackIdx) || !(sliceIdx))
{
free(stackIdx);
free(sliceIdx);
fgError("Failed to allocate memory in fghSphere");
}
/* generate for each stack */
for (i=0,idx=0; i<stacks-1; i++)
{
GLushort offset = 1+i*slices; /* start at 1 (0 is top vertex), and we advance one stack down as we go along */
for (j=0; j<slices; j++, idx++)
{
stackIdx[idx] = offset+j;
}
}
/* generate for each slice */
for (i=0,idx=0; i<slices; i++)
{
GLushort offset = 1+i; /* start at 1 (0 is top vertex), and we advance one slice as we go along */
sliceIdx[idx++] = 0; /* vertex on top */
for (j=0; j<stacks-1; j++, idx++)
{
sliceIdx[idx] = offset+j*slices;
}
sliceIdx[idx++] = nVert-1; /* zero based index, last element in array... */
}
/* draw */
fghDrawGeometryWire(vertices,normals,nVert,
sliceIdx,slices,stacks+1,GL_LINE_STRIP,
stackIdx,stacks-1,slices);
/* cleanup allocated memory */
free(sliceIdx);
free(stackIdx);
}
else
{
/* First, generate vertex index arrays for drawing with glDrawElements
* All stacks, including top and bottom are covered with a triangle
* strip.
*/
GLushort *stripIdx;
/* Create index vector */
GLushort offset;
/* Allocate buffers for indices, bail out if memory allocation fails */
stripIdx = malloc((slices+1)*2*(stacks)*sizeof(GLushort));
if (!(stripIdx))
{
free(stripIdx);
fgError("Failed to allocate memory in fghSphere");
}
/* top stack */
for (j=0, idx=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = j+1; /* 0 is top vertex, 1 is first for first stack */
stripIdx[idx+1] = 0;
}
stripIdx[idx ] = 1; /* repeat first slice's idx for closing off shape */
stripIdx[idx+1] = 0;
idx+=2;
/* middle stacks: */
/* Strip indices are relative to first index belonging to strip, NOT relative to first vertex/normal pair in array */
for (i=0; i<stacks-2; i++, idx+=2)
{
offset = 1+i*slices; /* triangle_strip indices start at 1 (0 is top vertex), and we advance one stack down as we go along */
for (j=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = offset+j+slices;
stripIdx[idx+1] = offset+j;
}
stripIdx[idx ] = offset+slices; /* repeat first slice's idx for closing off shape */
stripIdx[idx+1] = offset;
}
/* bottom stack */
offset = 1+(stacks-2)*slices; /* triangle_strip indices start at 1 (0 is top vertex), and we advance one stack down as we go along */
for (j=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = nVert-1; /* zero based index, last element in array (bottom vertex)... */
stripIdx[idx+1] = offset+j;
}
stripIdx[idx ] = nVert-1; /* repeat first slice's idx for closing off shape */
stripIdx[idx+1] = offset;
/* draw */
fghDrawGeometrySolid(vertices,normals,stripIdx,nVert,stacks,(slices+1)*2);
/* cleanup allocated memory */
free(stripIdx);
}
/* cleanup allocated memory */
free(vertices);
free(normals);
}
static void fghCone( double base, double height, GLint slices, GLint stacks, GLboolean useWireMode )
{
int i,j,idx, nVert;
GLfloat *vertices, *normals;
/* Generate vertices and normals */
/* Note, (stacks+1)*slices vertices for side of object, slices+1 for top and bottom closures */
fghGenerateCone((GLfloat)base,(GLfloat)height,slices,stacks,&vertices,&normals,&nVert);
if (nVert==0)
/* nothing to draw */
return;
if (useWireMode)
{
GLushort *sliceIdx, *stackIdx;
/* First, generate vertex index arrays for drawing with glDrawElements
* We have a bunch of line_loops to draw for each stack, and a
* bunch for each slice.
*/
stackIdx = malloc(slices*stacks*sizeof(GLushort));
sliceIdx = malloc(slices*2 *sizeof(GLushort));
if (!(stackIdx) || !(sliceIdx))
{
free(stackIdx);
free(sliceIdx);
fgError("Failed to allocate memory in fghCone");
}
/* generate for each stack */
for (i=0,idx=0; i<stacks; i++)
{
GLushort offset = 1+(i+1)*slices; /* start at 1 (0 is top vertex), and we advance one stack down as we go along */
for (j=0; j<slices; j++, idx++)
{
stackIdx[idx] = offset+j;
}
}
/* generate for each slice */
for (i=0,idx=0; i<slices; i++)
{
GLushort offset = 1+i; /* start at 1 (0 is top vertex), and we advance one slice as we go along */
sliceIdx[idx++] = offset+slices;
sliceIdx[idx++] = offset+(stacks+1)*slices;
}
/* draw */
fghDrawGeometryWire(vertices,normals,nVert,
sliceIdx,1,slices*2,GL_LINES,
stackIdx,stacks,slices);
/* cleanup allocated memory */
free(sliceIdx);
free(stackIdx);
}
else
{
/* First, generate vertex index arrays for drawing with glDrawElements
* All stacks, including top and bottom are covered with a triangle
* strip.
*/
GLushort *stripIdx;
/* Create index vector */
GLushort offset;
/* Allocate buffers for indices, bail out if memory allocation fails */
stripIdx = malloc((slices+1)*2*(stacks+1)*sizeof(GLushort)); /*stacks +1 because of closing off bottom */
if (!(stripIdx))
{
free(stripIdx);
fgError("Failed to allocate memory in fghCone");
}
/* top stack */
for (j=0, idx=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = 0;
stripIdx[idx+1] = j+1; /* 0 is top vertex, 1 is first for first stack */
}
stripIdx[idx ] = 0; /* repeat first slice's idx for closing off shape */
stripIdx[idx+1] = 1;
idx+=2;
/* middle stacks: */
/* Strip indices are relative to first index belonging to strip, NOT relative to first vertex/normal pair in array */
for (i=0; i<stacks; i++, idx+=2)
{
offset = 1+(i+1)*slices; /* triangle_strip indices start at 1 (0 is top vertex), and we advance one stack down as we go along */
for (j=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = offset+j;
stripIdx[idx+1] = offset+j+slices;
}
stripIdx[idx ] = offset; /* repeat first slice's idx for closing off shape */
stripIdx[idx+1] = offset+slices;
}
/* draw */
fghDrawGeometrySolid(vertices,normals,stripIdx,nVert,stacks+1,(slices+1)*2);
/* cleanup allocated memory */
free(stripIdx);
}
/* cleanup allocated memory */
free(vertices);
free(normals);
}
static void fghCylinder( double radius, double height, GLint slices, GLint stacks, GLboolean useWireMode )
{
int i,j,idx, nVert;
GLfloat *vertices, *normals;
/* Generate vertices and normals */
/* Note, (stacks+1)*slices vertices for side of object, 2*slices+2 for top and bottom closures */
fghGenerateCylinder((GLfloat)radius,(GLfloat)height,slices,stacks,&vertices,&normals,&nVert);
if (nVert==0)
/* nothing to draw */
return;
if (useWireMode)
{
GLushort *sliceIdx, *stackIdx;
/* First, generate vertex index arrays for drawing with glDrawElements
* We have a bunch of line_loops to draw for each stack, and a
* bunch for each slice.
*/
stackIdx = malloc(slices*(stacks+1)*sizeof(GLushort));
sliceIdx = malloc(slices*2 *sizeof(GLushort));
if (!(stackIdx) || !(sliceIdx))
{
free(stackIdx);
free(sliceIdx);
fgError("Failed to allocate memory in fghCylinder");
}
/* generate for each stack */
for (i=0,idx=0; i<stacks+1; i++)
{
GLushort offset = 1+(i+1)*slices; /* start at 1 (0 is top vertex), and we advance one stack down as we go along */
for (j=0; j<slices; j++, idx++)
{
stackIdx[idx] = offset+j;
}
}
/* generate for each slice */
for (i=0,idx=0; i<slices; i++)
{
GLushort offset = 1+i; /* start at 1 (0 is top vertex), and we advance one slice as we go along */
sliceIdx[idx++] = offset+slices;
sliceIdx[idx++] = offset+(stacks+1)*slices;
}
/* draw */
fghDrawGeometryWire(vertices,normals,nVert,
sliceIdx,1,slices*2,GL_LINES,
stackIdx,stacks+1,slices);
/* cleanup allocated memory */
free(sliceIdx);
free(stackIdx);
}
else
{
/* First, generate vertex index arrays for drawing with glDrawElements
* All stacks, including top and bottom are covered with a triangle
* strip.
*/
GLushort *stripIdx;
/* Create index vector */
GLushort offset;
/* Allocate buffers for indices, bail out if memory allocation fails */
stripIdx = malloc((slices+1)*2*(stacks+2)*sizeof(GLushort)); /*stacks +2 because of closing off bottom and top */
if (!(stripIdx))
{
free(stripIdx);
fgError("Failed to allocate memory in fghCylinder");
}
/* top stack */
for (j=0, idx=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = 0;
stripIdx[idx+1] = j+1; /* 0 is top vertex, 1 is first for first stack */
}
stripIdx[idx ] = 0; /* repeat first slice's idx for closing off shape */
stripIdx[idx+1] = 1;
idx+=2;
/* middle stacks: */
/* Strip indices are relative to first index belonging to strip, NOT relative to first vertex/normal pair in array */
for (i=0; i<stacks; i++, idx+=2)
{
offset = 1+(i+1)*slices; /* triangle_strip indices start at 1 (0 is top vertex), and we advance one stack down as we go along */
for (j=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = offset+j;
stripIdx[idx+1] = offset+j+slices;
}
stripIdx[idx ] = offset; /* repeat first slice's idx for closing off shape */
stripIdx[idx+1] = offset+slices;
}
/* top stack */
offset = 1+(stacks+2)*slices;
for (j=0; j<slices; j++, idx+=2)
{
stripIdx[idx ] = offset+j;
stripIdx[idx+1] = nVert-1; /* zero based index, last element in array (bottom vertex)... */
}
stripIdx[idx ] = offset;
stripIdx[idx+1] = nVert-1; /* repeat first slice's idx for closing off shape */
/* draw */
fghDrawGeometrySolid(vertices,normals,stripIdx,nVert,stacks+2,(slices+1)*2);
/* cleanup allocated memory */
free(stripIdx);
}
/* cleanup allocated memory */
free(vertices);
free(normals);
}
static void fghTorus( double dInnerRadius, double dOuterRadius, GLint nSides, GLint nRings, GLboolean useWireMode )
{
int i,j,idx, nVert;
GLfloat *vertices, *normals;
/* Generate vertices and normals */
fghGenerateTorus((GLfloat)dInnerRadius,(GLfloat)dOuterRadius,nSides,nRings, &vertices,&normals,&nVert);
if (nVert==0)
/* nothing to draw */
return;
if (useWireMode)
{
GLushort *sideIdx, *ringIdx;
/* First, generate vertex index arrays for drawing with glDrawElements
* We have a bunch of line_loops to draw each side, and a
* bunch for each ring.
*/
ringIdx = malloc(nRings*nSides*sizeof(GLushort));
sideIdx = malloc(nSides*nRings*sizeof(GLushort));
if (!(ringIdx) || !(sideIdx))
{
free(ringIdx);
free(sideIdx);
fgError("Failed to allocate memory in fghTorus");
}
/* generate for each ring */
for( j=0,idx=0; j<nRings; j++ )
for( i=0; i<nSides; i++, idx++ )
ringIdx[idx] = j * nSides + i;
/* generate for each side */
for( i=0,idx=0; i<nSides; i++ )
for( j=0; j<nRings; j++, idx++ )
sideIdx[idx] = j * nSides + i;
/* draw */
fghDrawGeometryWire(vertices,normals,nVert,
ringIdx,nRings,nSides,GL_LINE_LOOP,
sideIdx,nSides,nRings);
/* cleanup allocated memory */
free(sideIdx);
free(ringIdx);
}
else
{
/* First, generate vertex index arrays for drawing with glDrawElements
* All stacks, including top and bottom are covered with a triangle
* strip.
*/
GLushort *stripIdx;
/* Allocate buffers for indices, bail out if memory allocation fails */
stripIdx = malloc((nRings+1)*2*nSides*sizeof(GLushort));
if (!(stripIdx))
{
free(stripIdx);
fgError("Failed to allocate memory in fghTorus");
}
for( i=0, idx=0; i<nSides; i++ )
{
int ioff = 1;
if (i==nSides-1)
ioff = -i;
for( j=0; j<nRings; j++, idx+=2 )
{
int offset = j * nSides + i;
stripIdx[idx ] = offset;
stripIdx[idx+1] = offset + ioff;
}
/* repeat first to close off shape */
stripIdx[idx ] = i;
stripIdx[idx+1] = i + ioff;
idx +=2;
}
/* draw */
fghDrawGeometrySolid(vertices,normals,stripIdx,nVert,nSides,(nRings+1)*2);
/* cleanup allocated memory */
free(stripIdx);
}
/* cleanup allocated memory */
free(vertices);
free(normals);
}
/* -- INTERFACE FUNCTIONS ---------------------------------------------- */
/*
* Draws a solid sphere
*/
void FGAPIENTRY glutSolidSphere(double radius, GLint slices, GLint stacks)
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidSphere" );
fghSphere( radius, slices, stacks, FALSE );
}
/*
* Draws a wire sphere
*/
void FGAPIENTRY glutWireSphere(double radius, GLint slices, GLint stacks)
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireSphere" );
fghSphere( radius, slices, stacks, TRUE );
}
/*
* Draws a solid cone
*/
void FGAPIENTRY glutSolidCone( double base, double height, GLint slices, GLint stacks )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCone" );
fghCone( base, height, slices, stacks, FALSE );
}
/*
* Draws a wire cone
*/
void FGAPIENTRY glutWireCone( double base, double height, GLint slices, GLint stacks)
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCone" );
fghCone( base, height, slices, stacks, TRUE );
}
/*
* Draws a solid cylinder
*/
void FGAPIENTRY glutSolidCylinder(double radius, double height, GLint slices, GLint stacks)
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCylinder" );
fghCylinder( radius, height, slices, stacks, FALSE );
}
/*
* Draws a wire cylinder
*/
void FGAPIENTRY glutWireCylinder(double radius, double height, GLint slices, GLint stacks)
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCylinder" );
fghCylinder( radius, height, slices, stacks, TRUE );
}
/*
* Draws a wire torus
*/
void FGAPIENTRY glutWireTorus( double dInnerRadius, double dOuterRadius, GLint nSides, GLint nRings )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTorus" );
fghTorus(dInnerRadius, dOuterRadius, nSides, nRings, TRUE);
}
/*
* Draws a solid torus
*/
void FGAPIENTRY glutSolidTorus( double dInnerRadius, double dOuterRadius, GLint nSides, GLint nRings )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTorus" );
fghTorus(dInnerRadius, dOuterRadius, nSides, nRings, FALSE);
}
/* -- INTERFACE FUNCTIONS -------------------------------------------------- */
/* Macro to generate interface functions */
#define DECLARE_SHAPE_INTERFACE(nameICaps)\
void FGAPIENTRY glutWire##nameICaps( void )\
{\
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWire"#nameICaps );\
fgh##nameICaps( TRUE );\
}\
void FGAPIENTRY glutSolid##nameICaps( void )\
{\
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolid"#nameICaps );\
fgh##nameICaps( FALSE );\
}
void FGAPIENTRY glutWireCube( double dSize )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCube" );
fghCube( (GLfloat)dSize, TRUE );
}
void FGAPIENTRY glutSolidCube( double dSize )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCube" );
fghCube( (GLfloat)dSize, FALSE );
}
DECLARE_SHAPE_INTERFACE(Dodecahedron)
DECLARE_SHAPE_INTERFACE(Icosahedron)
DECLARE_SHAPE_INTERFACE(Octahedron)
DECLARE_SHAPE_INTERFACE(RhombicDodecahedron)
void FGAPIENTRY glutWireSierpinskiSponge ( int num_levels, double offset[3], double scale )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireSierpinskiSponge" );
fghSierpinskiSponge ( num_levels, offset, (GLfloat)scale, TRUE );
}
void FGAPIENTRY glutSolidSierpinskiSponge ( int num_levels, double offset[3], double scale )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidSierpinskiSponge" );
fghSierpinskiSponge ( num_levels, offset, (GLfloat)scale, FALSE );
}
DECLARE_SHAPE_INTERFACE(Tetrahedron)
/*** END OF FILE ***/