Commit of work from Nigel:

Massive rework of the geometric primitive code.  Includes a new
primitive (cylinder; solid and wireframe) and corresponding update
to freeglut_ext.h for the prototype.


git-svn-id: https://svn.code.sf.net/p/freeglut/code/trunk@364 7f0cb862-5218-0410-a997-914c9d46530a
This commit is contained in:
rkrolib 2003-11-25 13:53:19 +00:00
parent 96ee3c4798
commit e1416ae642
2 changed files with 635 additions and 529 deletions

View File

@ -97,6 +97,8 @@ FGAPI void FGAPIENTRY glutWireRhombicDodecahedron( void );
FGAPI void FGAPIENTRY glutSolidRhombicDodecahedron( void );
FGAPI void FGAPIENTRY glutWireSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale ) ;
FGAPI void FGAPIENTRY glutSolidSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale ) ;
FGAPI void FGAPIENTRY glutWireCylinder( GLdouble radius, GLdouble height, GLint slices, GLint stacks);
FGAPI void FGAPIENTRY glutSolidCylinder( GLdouble radius, GLdouble height, GLint slices, GLint stacks);
/*
* Extension functions, see freeglut_ext.c

View File

@ -30,6 +30,8 @@
#endif
#include "../include/GL/freeglut.h"
#include "freeglut_internal.h"
/*
@ -39,13 +41,6 @@
*
* glutWireCube() -- looks OK
* glutSolidCube() -- OK
* glutWireSphere() -- OK
* glutSolidSphere() -- OK
*
* Following functions have been implemented by Pawel and modified by John Fay:
*
* glutWireCone() -- looks OK
* glutSolidCone() -- looks OK
*
* Those functions have been implemented by John Fay.
*
@ -59,6 +54,14 @@
* glutSolidTetrahedron() -- looks OK
* glutWireIcosahedron() -- looks OK
* glutSolidIcosahedron() -- looks OK
*
* The Following functions have been updated by Nigel Stewart, based
* on FreeGLUT 2.0.0 implementations:
*
* glutWireSphere() -- looks OK
* glutSolidSphere() -- looks OK
* glutWireCone() -- looks OK
* glutSolidCone() -- looks OK
*/
@ -115,284 +118,205 @@ void FGAPIENTRY glutSolidCube( GLdouble dSize )
}
/*
* Draws a wire sphere. Code contributed by Andreas Umbach <marvin@dataway.ch>
* Compute lookup table of cos and sin values forming a cirle
*
* Notes:
* It is the responsibility of the caller to free these tables
* The size of the table is (n+1) to form a connected loop
* The last entry is exactly the same as the first
* The sign of n can be flipped to get the reverse loop
*/
void FGAPIENTRY glutWireSphere( GLdouble dRadius, GLint slices, GLint stacks )
static void circleTable(double **sint,double **cost,const int n)
{
double radius = dRadius, phi, psi, dpsi, dphi;
double *vertex;
int i, j;
double cphi, sphi, cpsi, spsi ;
int i;
/* Table size, the sign of n flips the circle direction */
const int size = abs(n);
/* Determine the angle between samples */
const double angle = 2*M_PI/(double)n;
/* Allocate memory for n samples, plus duplicate of first entry at the end */
*sint = (double *) calloc(sizeof(double), size+1);
*cost = (double *) calloc(sizeof(double), size+1);
/* Bail out if memory allocation fails, fgError never returns */
if (!(*sint) || !(*cost))
{
free(*sint);
free(*cost);
fgError("Failed to allocate memory in circleTable");
}
/* Compute cos and sin around the circle */
for (i=0; i<size; i++)
{
(*sint)[i] = sin(angle*i);
(*cost)[i] = cos(angle*i);
}
/* Last sample is duplicate of the first */
(*sint)[size] = (*sint)[0];
(*cost)[size] = (*cost)[0];
}
/*
* Allocate the vertices array
* Draws a solid sphere
*/
vertex = (double *)calloc( sizeof(double), 3 * slices * (stacks - 1) );
glPushMatrix();
glScaled( radius, radius, radius );
dpsi = M_PI / (stacks + 1);
dphi = 2 * M_PI / slices;
psi = dpsi;
for( j=0; j<stacks-1; j++ )
void FGAPIENTRY glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
{
cpsi = cos ( psi );
spsi = sin ( psi );
phi = 0.0;
int i,j;
for( i=0; i<slices; i++ )
/* Adjust z and radius as stacks are drawn. */
double z0,z1;
double r0,r1;
/* Pre-computed circle */
double *sint1,*cost1;
double *sint2,*cost2;
circleTable(&sint1,&cost1,-slices);
circleTable(&sint2,&cost2,stacks*2);
/* The top stack is covered with a triangle fan */
z0 = 1.0;
z1 = cost2[1];
r0 = 0.0;
r1 = sint2[1];
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0,0,1);
glVertex3d(0,0,radius);
for (j=slices; j>=0; j--)
{
int offset = 3 * ( j * slices + i );
cphi = cos ( phi );
sphi = sin ( phi );
*(vertex + offset + 0) = sphi * spsi ;
*(vertex + offset + 1) = cphi * spsi ;
*(vertex + offset + 2) = cpsi ;
phi += dphi;
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
}
psi += dpsi;
glEnd();
/* Cover each stack with a quad strip, except the top and bottom stacks */
for( i=1; i<stacks-1; i++ )
{
z0 = z1; z1 = cost2[i+1];
r0 = r1; r1 = sint2[i+1];
glBegin(GL_QUAD_STRIP);
for(j=0; j<=slices; j++)
{
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
}
glEnd();
}
/* The bottom stack is covered with a triangle fan */
z0 = z1;
r0 = r1;
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0,0,-1);
glVertex3d(0,0,-radius);
for (j=0; j<=slices; j++)
{
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
}
glEnd();
/* Release sin and cos tables */
free(sint1);
free(cost1);
free(sint2);
free(cost2);
}
/*
* Draws a solid sphere
*/
void FGAPIENTRY glutWireSphere(GLdouble radius, GLint slices, GLint stacks)
{
int i,j;
/* Adjust z and radius as stacks and slices are drawn. */
double r;
double x,y,z;
/* Pre-computed circle */
double *sint1,*cost1;
double *sint2,*cost2;
circleTable(&sint1,&cost1,-slices );
circleTable(&sint2,&cost2, stacks*2);
/* Draw a line loop for each stack */
for (i=1; i<stacks; i++)
{
z = cost2[i];
r = sint2[i];
glBegin(GL_LINE_LOOP);
for(j=0; j<=slices; j++)
{
x = cost1[j];
y = sint1[j];
glNormal3d(x,y,z);
glVertex3d(x*r*radius,y*r*radius,z*radius);
}
glEnd();
}
/* Draw a line loop for each slice */
for (i=0; i<slices; i++)
{
glBegin(GL_LINE_STRIP);
glNormal3d( 0, 0, 1 );
glVertex3d( 0, 0, 1 );
for( j=0; j<stacks - 1; j++ )
for(j=0; j<=stacks; j++)
{
int offset = 3 * ( j * slices + i );
glNormal3dv( vertex + offset );
glVertex3dv( vertex + offset );
}
x = cost1[i]*sint2[j];
y = sint1[i]*sint2[j];
z = cost2[j];
glNormal3d(0, 0, -1);
glVertex3d(0, 0, -1);
glEnd();
}
for( j=0; j<stacks-1; j++ )
{
glBegin(GL_LINE_LOOP);
for( i=0; i<slices; i++ )
{
int offset = 3 * ( j * slices + i );
glNormal3dv( vertex + offset );
glVertex3dv( vertex + offset );
glNormal3d(x,y,z);
glVertex3d(x*radius,y*radius,z*radius);
}
glEnd();
}
free( vertex );
glPopMatrix();
}
/* Release sin and cos tables */
/*
* Draws a solid sphere. Code contributed by Andreas Umbach <marvin@dataway.ch>
*/
void FGAPIENTRY glutSolidSphere( GLdouble dRadius, GLint slices, GLint stacks )
{
double radius = dRadius, phi, psi, dpsi, dphi;
double *next, *tmp, *row;
int i, j;
double cphi, sphi, cpsi, spsi ;
glPushMatrix();
/* glScalef( radius, radius, radius ); */
row = (double *)calloc( sizeof(double), slices * 3 );
next = (double *)calloc( sizeof(double), slices * 3 );
dpsi = M_PI / (stacks + 1);
dphi = 2 * M_PI / slices;
psi = dpsi;
phi = 0;
/* init first line + do polar cap */
glBegin( GL_TRIANGLE_FAN );
glNormal3d( 0.0, 0.0, 1.0 );
glVertex3d( 0.0, 0.0, radius );
for( i=0; i<slices; i++ )
{
row[ i * 3 + 0 ] = sin( phi ) * sin( psi );
row[ i * 3 + 1 ] = cos( phi ) * sin( psi );
row[ i * 3 + 2 ] = cos( psi );
glNormal3dv( row + 3 * i );
glVertex3d(
radius * *(row + 3 * i + 0),
radius * *(row + 3 * i + 1),
radius * *(row + 3 * i + 2)
);
phi += dphi;
}
glNormal3dv( row );
glVertex3d( radius * *(row + 0), radius * *(row + 1), radius * *(row + 2) );
glEnd();
for( j=0; j<stacks-1; j++ )
{
phi = 0.0;
psi += dpsi;
cpsi = cos ( psi );
spsi = sin ( psi );
/* get coords */
glBegin( GL_QUAD_STRIP );
/* glBegin(GL_LINE_LOOP); */
for( i=0; i<slices; i++ )
{
cphi = cos ( phi );
sphi = sin ( phi );
next[ i * 3 + 0 ] = sphi * spsi ;
next[ i * 3 + 1 ] = cphi * spsi ;
next[ i * 3 + 2 ] = cpsi ;
glNormal3dv( row + i * 3 );
glVertex3d(
radius * *(row + 3 * i + 0),
radius * *(row + 3 * i + 1),
radius * *(row + 3 * i + 2)
);
glNormal3dv( next + i * 3 );
glVertex3d(
radius * *(next + 3 * i + 0),
radius * *(next + 3 * i + 1),
radius * *(next + 3 * i + 2)
);
phi += dphi;
}
glNormal3dv( row );
glVertex3d( radius * *(row + 0), radius * *(row + 1), radius * *(row + 2) );
glNormal3dv( next );
glVertex3d( radius * *(next + 0), radius * *(next + 1), radius * *(next + 2) );
glEnd();
tmp = row;
row = next;
next = tmp;
}
/* south pole */
glBegin( GL_TRIANGLE_FAN );
glNormal3d( 0.0, 0.0, -1.0 );
glVertex3d( 0.0, 0.0, -radius );
glNormal3dv( row );
glVertex3d( radius * *(row + 0), radius * *(row + 1), radius * *(row + 2) );
for( i=slices-1; i>=0; i-- )
{
glNormal3dv(row + 3 * i);
glVertex3d(
radius * *(row + 3 * i + 0),
radius * *(row + 3 * i + 1),
radius * *(row + 3 * i + 2)
);
}
glEnd();
free(row);
free(next);
glPopMatrix();
}
/*
* Draws a wire cone
*/
void FGAPIENTRY glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
{
double alt = height / (double) (stacks + 1);
double angle = M_PI / (double) slices * 2.0;
double slope = ( height / base );
double sBase = base ;
double sinNormal = ( base / sqrt ( height * height + base * base ));
double cosNormal = ( height / sqrt ( height * height + base * base ));
double *vertices = NULL;
int i, j;
/*
* We need 'slices' points on a circle
*/
vertices = (double *)calloc( sizeof(double), 2 * (slices + 1) );
for( j=0; j<slices+1; j++ )
{
vertices[ j*2 + 0 ] = cos( angle * j );
vertices[ j*2 + 1 ] = sin( angle * j );
}
/*
* First the cone's bottom...
*/
for( j=0; j<slices; j++ )
{
glBegin( GL_LINE_LOOP );
glNormal3d( 0.0, 0.0, -1.0 );
glVertex3d( vertices[ (j+0)*2+0 ] * sBase, vertices[ (j+0)*2+1 ] * sBase, 0 );
glVertex3d( vertices[ (j+1)*2+0 ] * sBase, vertices[ (j+1)*2+1 ] * sBase, 0 );
glVertex3d( 0.0, 0.0, 0.0 );
glEnd();
}
/*
* Then all the stacks between the bottom and the top
*/
for( i=0; i<stacks; i++ )
{
double alt_a = i * alt, alt_b = (i + 1) * alt;
double scl_a = (height - alt_a) / slope;
double scl_b = (height - alt_b) / slope;
for( j=0; j<slices; j++ )
{
glBegin( GL_LINE_LOOP );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[(j+0)*2+0] * scl_a, vertices[(j+0)*2+1] * scl_a, alt_a );
glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal );
glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
glEnd();
glBegin( GL_LINE_LOOP );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal );
glVertex3d( vertices[(j+1)*2+0] * scl_b, vertices[(j+1)*2+1] * scl_b, alt_b );
glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
glEnd();
}
}
/*
* Finally have the top part drawn...
*/
for( j=0; j<slices; j++ )
{
double scl = alt / slope;
glBegin( GL_LINE_LOOP );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[ (j+0)*2+0 ] * scl, vertices[ (j+0)*2+1 ] * scl, height - alt );
glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal );
glVertex3d( vertices[ (j+1)*2+0 ] * scl, vertices[ (j+1)*2+1 ] * scl, height - alt );
glVertex3d( 0, 0, height );
glEnd();
}
free(sint1);
free(cost1);
free(sint2);
free(cost2);
}
/*
@ -400,85 +324,265 @@ void FGAPIENTRY glutWireCone( GLdouble base, GLdouble height, GLint slices, GLin
*/
void FGAPIENTRY glutSolidCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
{
double alt = height / (double) (stacks + 1);
double angle = M_PI / (double) slices * 2.0f;
double slope = ( height / base );
double sBase = base ;
double sinNormal = ( base / sqrt ( height * height + base * base ));
double cosNormal = ( height / sqrt ( height * height + base * base ));
double *vertices = NULL;
int i,j;
/*
* We need 'slices' points on a circle
*/
vertices = (double *)calloc( sizeof(double), 2 * (slices + 1) );
/* Step in z and radius as stacks are drawn. */
for( j=0; j<slices+1; j++ )
double z0,z1;
double r0,r1;
const double zStep = height/stacks;
const double rStep = base/stacks;
/* Scaling factors for vertex normals */
const double cosn = ( height / sqrt ( height * height + base * base ));
const double sinn = ( base / sqrt ( height * height + base * base ));
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Cover the circular base with a triangle fan... */
z0 = 0.0;
z1 = zStep;
r0 = base;
r1 = r0 - rStep;
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0,0.0,-1.0);
glVertex3d(0.0,0.0, z0 );
for (j=0; j<=slices; j++)
glVertex3d(cost[j]*r0, sint[j]*r0, z0);
glEnd();
/* Cover each stack with a quad strip, except the top stack */
for( i=0; i<stacks-1; i++ )
{
vertices[ j*2 + 0 ] = cos( angle * j );
vertices[ j*2 + 1 ] = sin( angle * j );
glBegin(GL_QUAD_STRIP);
for(j=0; j<=slices; j++)
{
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
glVertex3d(cost[j]*r0, sint[j]*r0, z0 );
glVertex3d(cost[j]*r1, sint[j]*r1, z1 );
}
/*
* First the cone's bottom...
*/
for( j=0; j<slices; j++ )
{
glBegin( GL_TRIANGLES );
glNormal3d( 0.0, 0.0, -1.0 );
glVertex3d( vertices[ (j+0)*2+0 ] * sBase, vertices[ (j+0)*2+1 ] * sBase, 0 );
glVertex3d( vertices[ (j+1)*2+0 ] * sBase, vertices[ (j+1)*2+1 ] * sBase, 0 );
glVertex3d( 0.0, 0.0, 0.0 );
z0 = z1; z1 += zStep;
r0 = r1; r1 -= rStep;
glEnd();
}
/* The top stack is covered with individual triangles */
glBegin(GL_TRIANGLES);
glNormal3d(cost[0]*sinn, sint[0]*sinn, cosn);
for (j=0; j<slices; j++)
{
glVertex3d(cost[j+0]*r0, sint[j+0]*r0, z0 );
glVertex3d(0, 0, height);
glNormal3d(cost[j+1]*sinn, sint[j+1]*sinn, cosn );
glVertex3d(cost[j+1]*r0, sint[j+1]*r0, z0 );
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Then all the stacks between the bottom and the top
* Draws a wire cone
*/
void FGAPIENTRY glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z = 0.0;
double r = base;
const double zStep = height/stacks;
const double rStep = base/stacks;
/* Scaling factors for vertex normals */
const double cosn = ( height / sqrt ( height * height + base * base ));
const double sinn = ( base / sqrt ( height * height + base * base ));
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Draw the stacks... */
for (i=0; i<stacks; i++)
{
double alt_a = i * alt, alt_b = (i + 1) * alt;
double scl_a = (height - alt_a) / slope;
double scl_b = (height - alt_b) / slope;
glBegin(GL_LINE_LOOP);
for( j=0; j<slices; j++ )
{
glBegin( GL_TRIANGLES );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[(j+0)*2+0] * scl_a, vertices[(j+0)*2+1] * scl_a, alt_a );
glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal );
glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
glVertex3d(cost[j]*r, sint[j]*r, z );
}
glEnd();
glBegin( GL_TRIANGLES );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal );
glVertex3d( vertices[(j+1)*2+0] * scl_b, vertices[(j+1)*2+1] * scl_b, alt_b );
glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
glEnd();
z += zStep;
r -= rStep;
}
/* Draw the slices */
r = base;
glBegin(GL_LINES);
for (j=0; j<slices; j++)
{
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn );
glVertex3d(cost[j]*r, sint[j]*r, 0.0 );
glVertex3d(0.0, 0.0, height);
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Draws a solid cylinder
*/
void FGAPIENTRY glutSolidCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z0,z1;
const double zStep = height/stacks;
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Cover the base and top */
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0, 0.0, -1.0 );
glVertex3d(0.0, 0.0, 0.0 );
for (j=0; j<=slices; j++)
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0);
glEnd();
glBegin(GL_TRIANGLE_FAN);
glNormal3d(0.0, 0.0, 1.0 );
glVertex3d(0.0, 0.0, height);
for (j=slices; j>=0; j--)
glVertex3d(cost[j]*radius, sint[j]*radius, height);
glEnd();
/* Do the stacks */
z0 = 0.0;
z1 = zStep;
for (i=1; i<=stacks; i++)
{
if (i==stacks)
z1 = height;
glBegin(GL_QUAD_STRIP);
for (j=0; j<=slices; j++ )
{
glNormal3d(cost[j], sint[j], 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, z0 );
glVertex3d(cost[j]*radius, sint[j]*radius, z1 );
}
glEnd();
z0 = z1; z1 += zStep;
}
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
* Finally have the top part drawn...
* Draws a wire cylinder
*/
void FGAPIENTRY glutWireCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
{
int i,j;
/* Step in z and radius as stacks are drawn. */
double z = 0.0;
const double zStep = height/stacks;
/* Pre-computed circle */
double *sint,*cost;
circleTable(&sint,&cost,-slices);
/* Draw the stacks... */
for (i=0; i<=stacks; i++)
{
if (i==stacks)
z = height;
glBegin(GL_LINE_LOOP);
for( j=0; j<slices; j++ )
{
double scl = alt / slope;
glBegin( GL_TRIANGLES );
glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal );
glVertex3d( vertices[ (j+0)*2+0 ] * scl, vertices[ (j+0)*2+1 ] * scl, height - alt );
glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal );
glVertex3d( vertices[ (j+1)*2+0 ] * scl, vertices[ (j+1)*2+1 ] * scl, height - alt );
glVertex3d( 0, 0, height );
glEnd();
glNormal3d(cost[j], sint[j], 0.0);
glVertex3d(cost[j]*radius, sint[j]*radius, z );
}
glEnd();
z += zStep;
}
/* Draw the slices */
glBegin(GL_LINES);
for (j=0; j<slices; j++)
{
glNormal3d(cost[j], sint[j], 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0 );
glVertex3d(cost[j]*radius, sint[j]*radius, height);
}
glEnd();
/* Release sin and cos tables */
free(sint);
free(cost);
}
/*
@ -500,7 +604,7 @@ void FGAPIENTRY glutWireTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLi
glPushMatrix();
dpsi = 2.0 * M_PI / (double)nRings ;
dphi = 2.0 * M_PI / (double)nSides ;
dphi = -2.0 * M_PI / (double)nSides ;
psi = 0.0;
for( j=0; j<nRings; j++ )
@ -584,7 +688,7 @@ void FGAPIENTRY glutSolidTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GL
glPushMatrix();
dpsi = 2.0 * M_PI / (double)(nRings - 1) ;
dphi = 2.0 * M_PI / (double)(nSides - 1);
dphi = -2.0 * M_PI / (double)(nSides - 1) ;
psi = 0.0;
for( j=0; j<nRings; j++ )