Done dodecahedron. Nice, this just worked!

git-svn-id: https://svn.code.sf.net/p/freeglut/code/trunk@1166 7f0cb862-5218-0410-a997-914c9d46530a
This commit is contained in:
dcnieho 2012-03-17 02:06:21 +00:00
parent c4e7f30fae
commit 445fd29338

View File

@ -263,7 +263,84 @@ static GLubyte cube_vi[CUBE_VERT_PER_OBJ] =
};
DECLARE_SHAPE_CACHE_DECOMPOSE_TO_TRIANGLE(cube,Cube,CUBE);
/* Icosahedron */
/* -- Dodecahedron -- */
/* Magic Numbers: It is possible to create a dodecahedron by attaching two
* pentagons to each face of of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
* x = 0.61803398875 and z = 1.61803398875.
*/
#define DODECAHEDRON_NUM_VERT 20
#define DODECAHEDRON_NUM_FACES 12
#define DODECAHEDRON_NUM_EDGE_PER_FACE 5
#define DODECAHEDRON_VERT_PER_OBJ (DODECAHEDRON_NUM_FACES*DODECAHEDRON_NUM_EDGE_PER_FACE)
#define DODECAHEDRON_VERT_PER_OBJ_TRI (DODECAHEDRON_VERT_PER_OBJ+DODECAHEDRON_NUM_FACES*4) /* 4 extra edges per face when drawing pentagons as triangles */
#define DODECAHEDRON_VERT_ELEM_PER_OBJ (DODECAHEDRON_VERT_PER_OBJ_TRI*3)
/* Vertex Coordinates */
static GLdouble dodecahedron_v[DODECAHEDRON_NUM_VERT*3] =
{
0.0 , 1.61803398875, 0.61803398875,
-1.0 , 1.0 , 1.0 ,
-0.61803398875, 0.0 , 1.61803398875,
0.61803398875, 0.0 , 1.61803398875,
1.0 , 1.0 , 1.0 ,
0.0 , 1.61803398875, -0.61803398875,
1.0 , 1.0 , -1.0 ,
0.61803398875, 0.0 , -1.61803398875,
-0.61803398875, 0.0 , -1.61803398875,
-1.0 , 1.0 , -1.0 ,
0.0 , -1.61803398875, 0.61803398875,
1.0 , -1.0 , 1.0 ,
-1.0 , -1.0 , 1.0 ,
0.0 , -1.61803398875, -0.61803398875,
-1.0 , -1.0 , -1.0 ,
1.0 , -1.0 , -1.0 ,
1.61803398875, -0.61803398875, 0.0 ,
1.61803398875, 0.61803398875, 0.0 ,
-1.61803398875, 0.61803398875, 0.0 ,
-1.61803398875, -0.61803398875, 0.0
};
/* Normal Vectors */
static GLdouble dodecahedron_n[DODECAHEDRON_NUM_FACES*3] =
{
0.0 , 0.525731112119, 0.850650808354,
0.0 , 0.525731112119, -0.850650808354,
0.0 , -0.525731112119, 0.850650808354,
0.0 , -0.525731112119, -0.850650808354,
0.850650808354, 0.0 , 0.525731112119,
-0.850650808354, 0.0 , 0.525731112119,
0.850650808354, 0.0 , -0.525731112119,
-0.850650808354, 0.0 , -0.525731112119,
0.525731112119, 0.850650808354, 0.0 ,
0.525731112119, -0.850650808354, 0.0 ,
-0.525731112119, 0.850650808354, 0.0 ,
-0.525731112119, -0.850650808354, 0.0 ,
};
/* Vertex indices */
static GLubyte dodecahedron_vi[DODECAHEDRON_VERT_PER_OBJ] =
{
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 3, 2, 12,
13, 14, 8, 7, 15,
3, 11, 16, 17, 4,
2, 1, 18, 19, 12,
7, 6, 17, 16, 15,
8, 14, 19, 18, 9,
17, 6, 5, 0, 4,
16, 11, 10, 13, 15,
18, 1, 0, 5, 9,
19, 14, 13, 10, 12
};
DECLARE_SHAPE_CACHE_DECOMPOSE_TO_TRIANGLE(dodecahedron,Dodecahedron,DODECAHEDRON);
/* -- Icosahedron -- */
#define ICOSAHEDRON_NUM_VERT 12
#define ICOSAHEDRON_NUM_FACES 20
#define ICOSAHEDRON_NUM_EDGE_PER_FACE 3
@ -625,6 +702,7 @@ static void fghCube( GLdouble dSize, GLboolean useWireMode )
fghDrawGeometry(GL_TRIANGLES,cube_verts,cube_norms,cube_edgeFlags,CUBE_VERT_PER_OBJ_TRI,useWireMode);
}
DECLARE_INTERNAL_DRAW_DECOMPOSED_TO_TRIANGLE(dodecahedron,Dodecahedron,DODECAHEDRON);
DECLARE_INTERNAL_DRAW(icosahedron,Icosahedron,ICOSAHEDRON);
DECLARE_INTERNAL_DRAW(octahedron,Octahedron,OCTAHEDRON);
DECLARE_INTERNAL_DRAW_DECOMPOSED_TO_TRIANGLE(rhombicdodecahedron,RhombicDodecahedron,RHOMBICDODECAHEDRON);
@ -1250,112 +1328,6 @@ void FGAPIENTRY glutSolidTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GL
glPopMatrix();
}
/*
*
*/
void FGAPIENTRY glutWireDodecahedron( void )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireDodecahedron" );
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
* of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
* x = 0.61803398875 and z = 1.61803398875.
*/
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_LINE_LOOP ) ;
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
}
/*
*
*/
void FGAPIENTRY glutSolidDodecahedron( void )
{
FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidDodecahedron" );
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
* of a cube. The coordinates of the points are:
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
* x = 0.61803398875 and z = 1.61803398875.
*/
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
glEnd () ;
glBegin ( GL_POLYGON ) ;
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
glEnd () ;
}
/* -- INTERFACE FUNCTIONS -------------------------------------------------- */
@ -1383,6 +1355,7 @@ void FGAPIENTRY glutSolidCube( GLdouble dSize )
fghCube( dSize, FALSE );
}
DECLARE_SHAPE_INTERFACE(Dodecahedron);
DECLARE_SHAPE_INTERFACE(Icosahedron);
DECLARE_SHAPE_INTERFACE(Octahedron);
DECLARE_SHAPE_INTERFACE(RhombicDodecahedron);